Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy.
نویسندگان
چکیده
We recently reported the analysis of the frequency noise in the frequency modulation atomic force microscopy (FM-AFM) both in high-Q and low-Q environments [Rev. Sci. Instrum. 80, 043708 (2009)]. We showed in the paper that the oscillator noise, the frequency fluctuation of the oscillator, becomes prominent in the modulation frequency lower than f(0)∕2Q, where f(0) and Q are the resonance frequency and Q-factor. The magnitude of the oscillator noise is determined by the slope of the phase versus frequency curve of the cantilever at f(0). However, in actual FM-AFM in liquids, the phase versus frequency curve may not be always ideal because of the existence of various phase shifting elements (PSEs). For example, the spurious resonance peaks caused by the acoustic excitation and a band-pass filter in the self-oscillation loop increase the slope of the phase versus frequency curve. Due to those PSEs, the effective Q-factor is often increased from the intrinsic Q-factor of the cantilever. In this article, the frequency noise in the FM-AFM system with the PSEs in the self-oscillation loop is analyzed to show that the oscillator noise is reduced by the increase of the effective Q-factor. It is also shown that the oscillation frequency deviates from the resonance frequency due to the increase of the effective Q-factor, thereby causing the reduction in the frequency shift signal with the same factor. Therefore the increase of the effective Q-factor does not affect the signal-to-noise ratio in the frequency shift measurement, but it does affect the quantitativeness of the measured force in the FM-AFM. Furthermore, the reduction of the frequency noise and frequency shift by the increase of the effective Q-factor were confirmed by the experiments.
منابع مشابه
Effect of Underwater Ambient Noise on Quadraphase Phase-shift Keying Acoustic Sensor Network Links in Extremely Low Frequency Band
This study evaluates the impact of underwater ambient noise using seven real noise samples; Dolphin, Rain, Ferry, Sonar, Bubbles, Lightning, and Outboard Motor in three frequency ranges in extremely low frequency (ELF) band. The ELF band is the most significant bandwidth for underwater long-range communication. ELF band which is extended from 3 to 3000 Hz clearly, faces bandwidth limitation. Me...
متن کاملSensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کاملWideband digital frequency detector with subtraction-based phase comparator for frequency modulation atomic force microscopy.
We have developed a wideband digital frequency detector for high-speed frequency modulation atomic force microscopy (FM-AFM). We used a subtraction-based phase comparator (PC) in a phase-locked loop circuit instead of a commonly used multiplication-based PC, which has enhanced the detection bandwidth to 100 kHz. The quantitative analysis of the noise performance revealed that the internal noise...
متن کاملAccurate formulas for interaction force and energy in frequency modulation force spectroscopy
Frequency modulation atomic force microscopy utilizes the change in resonant frequency of a cantilever to detect variations in the interaction force between cantilever tip and sample. While a simple relation exists enabling the frequency shift to be determined for a given force law, the required complementary inverse relation does not exist for arbitrary oscillation amplitudes of the cantilever...
متن کاملModification of a commercial atomic force microscopy for low-noise, high-resolution frequency-modulation imaging in liquid environment.
A key issue for high-resolution frequency-modulation atomic force microscopy imaging in liquids is minimizing the frequency noise, which requires a detailed analysis of the corresponding noise contributions. In this paper, we present a detailed description for modifying a commercial atomic force microscope (Bruker MultiMode V with Nanoscope V controller), aiming at atomic-resolution frequency-m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 82 3 شماره
صفحات -
تاریخ انتشار 2011